

1Web Application Security

Web Application Security

By
Joe McCormack, April 2009

2Web Application Security

Table of Contents
Introduction ... 3

Mashups, Gadgets, Widgets and Dashboards ... 4

Google Gears and Javascript ... 5

Adobe Flash ... 6

The Captcha ... 7

Security Holes Galore ... 7

Improving Web Application Security ... 9

Conclusion .. 13

LIST OF FIGURES ... 16

REFERENCES ... 17

3Web Application Security

Introduction

According to Moscaritolo (2009), web application vulnerabilities comprise eighty

percent of web-related flaws. Among web browsers 43 percent of vulnerabilities were

attributed to Internet Explorer, 29 percent attributed to Firefox and 10 percent attributed

to Safari. What is disturbing is that in the article, Sergey Gordeychik, contributor for

WASC (Web Application Security Consortium) suggested that security requirements are

not often considered in the system design of web applications. Automated scanners

allow attackers to easily detect security vulnerabilities in web applications which may be

why so many vulnerabilities are found to be web application based. Help Net Security

(2008) wrote an article that demonstrated, based on the WASC Web Application

Security Statistics Project 2007, that (1) 41 percent of website vulnerabilities were XSS,

(2) 32 percent were due to information leakage, (3) 9 percent were due to SQL injection,

(4) 8 percent were due to predictive resource location and the remainder due to other

vulnerabilities.

With that information in mind, the purpose of this paper is to cover web

applications in further detail by exposing current content usage trends of users and

websites using different technologies. After exposing different technologies and what

they provide, discussion shifts to how vulnerabilities native to and through those

technologies can propagate to web applications, and from those web applications the

vulnerabilities can continue down-stream to other organizational assets such as a

database or mail server. Typically, a web application’s security strength is determined

by the knowledge, skill and competence of the team member(s) developing the web

application through their knowledge of not only the environment of the web application

but also by their knowledge of external influences on the web application. By the end of

the paper I expose several programs and resources that can be used to help secure

web applications from security vulnerabilities. In today’s interconnected world it is

critical to recognize and understand the significance of external influences (attack

methods), how those influences effect the web application and how the web application

can impact other systems by acting as a security vulnerability relay.

4Web Application Security

Mashups, Gadgets, Widgets and Dashboards

A mashup is a program that takes as input (1) content or functionality from an

external or internal website, (2) web service content or functionality from an external or

internal website, and, (3) aggregation services such as RSS, in order to combine those

inputs to create output that is not available from the inputs by themselves. A mashup

program is commonly assumed to be web-based in nature and requires some degree of

integration with a web server at the web application level; for instance, you import a API,

probably in the form of a DLL, into a .Net web project combining data from the API and

data unique to your web project to generate output that is embedded in a webpage or

creates output such as XML, thus becoming a mashup. Programmable Web

(http://www.programmableweb.com/howto) contains a list of API's for mashups. If

you've ever combined functionality or data of an external application/system into your

own application/system you've, in essence, created a mashup.

A widget, labeled "gadget" by various companies like Microsoft and Google, are

stand-alone applications that can run from the desktop (installed on a computer) which

could be an executable or a web-browser plug-in/extension. The other type of "widget"

or "gadget" is one which is designed to run in a webpage using web-browser plug-ins

such as Adobe Flash in that code is embedded into the webpage using the <object> or

<embed> tags, optionally passing parameters, to the location of the SWF file. The SWF

file then creates output that is typically viewed in the webpage. Widgets are used

extensively by social sites since end-users do not need to have any real programming

capability, and, the trend of Internet usage today is less on seeking data to that of

having data delivered from multiple sources. Unlike a mashup, a widget typically acts

like an RSS aggregator in that they grab data (input) from a single source in order to

create output.

5Web Application Security

A dashboard is a program which organizes content in a way that is easy to read

and is usually customized by the end-user. A dashboard is nothing more than a widget

functioning as a mashup by combining multiple widgets. A dashboard is commonly

desktop based (for example, there are dashboards for Microsoft Excel; Mac OS X Tiger

allows you to use a feature known as "Dashboard" to interact with local and remote

sources/data from the desktop). There are also digital dashboards, such as .Net

Dashboard Suite™ (http://www.perpetuumsoft.com/Product.aspx?lang=en&pid=44)

designed to run from within a webpage and are commonly oriented to add visual appeal

to reporting data; however, they are not truly a dashboard in the sense of what you

expect with desktop dashboards.

Google Gears and Javascript

Amit (2008) revealed that a widely-used RIA infrastructure known as Google

Gears (used by various services such as Google Docs, MySpace, WordPress and

others) is a web browser extension (similar to Adobe Flash in terms of what a web

browser extension is) that allows developers to create web applications that run online

and offline transparently and can be embedded into HTML pages by embedding

javascript calls to the Google Gears API. Google Gears is commonly used because it

can simplify the creation of mashups. Although now patched, Google Gears suffered

from a vulnerability with cross-origin communication that allowed attackers to

circumvent the same-origin policy to launch large-scale user-impersonation attacks.

With so many websites using Google Gears that vulnerability (basically allowing non-

Google Gears code to execute from a Google Gears worker) could have compromised

an unknown amount of data.

Of related interest is that many of the “offline” capabilities of Google Gears are

standard DOM web browser features with the HTML 5 specification. Previously it was

mentioned that Google Gears followed a RIA Infrastructure. As discussed by Domenig

6Web Application Security

(2009), RIA (Rich Internet Applications) technology has the goal of combining the

advantages of desktop applications with web applications.

The javascript DOM (Document Object Model) is an exposed architecture that

allows you, as the creator of a webpage (although you do not have to create a webpage

to gain access to the DOM since you can, for instance, create and execute entire

javascript functions from within the URL location bar of web browsers) to interact with

the web browser in different ways beyond the scope of this paper. XSS (Cross-site

scripting) commonly involves javascript. Although it has legitimate use (such as using

trusted javascript from Site B in Site A as demonstrated by McCormack (2008)), XSS is

commonly associated with javascript as (1) being embedded into a webpage (such as

from posting to a blog) enabling the entity who embedded the javascript code to do

things like steal cookie data from someone else visiting the webpage to hijacking and

impersonating that visitor, (2) phishing wherein someone clicks on a masked link going

to a webpage that opens a vulnerable page installed locally and from there (the

computer’s local zone) the script runs commands with the end-users privileges, and, (3)

CSRF (Cross Site Request Forgery) discussed later. As demonstrated by WASC

(2006), attacks such as injection is not limited to web applications or databases (such as

SQL Injection through the web application), but can also be launched against a mail

server when the medium between the end-user and the mail server is a web application.

Adobe Flash

Flash applications have become extremely popular for website developers due to

the visual appeal, interaction and portability that is possible across multiple web

browsers. These applications have also become popular in creating web-driven content

and widgets that are in heavy use with users of social sites. Flash applications, whether

it may be a presentation, movie, game or simulation can be viral wherein the SWF may

not only be downloaded into an end-user's temporary internet files folder on their

computer to enable it to be run, but it could also be placed on other web servers (an

7Web Application Security

example is by the end-user uploading the SWF into their own web space and then

linking to it from a webpage). Adobe Flash itself is a web-browser plug-in, and because

it is a plug-in that is installed directly onto an end-user’s computer, it has the potential to

perform activity beyond the control of the web browser that it is operating within. The

common methods of embedding a Flash application, as mentioned previously, is to use

the <object> or <embed> tags although you could directly link to an SWF file.

The Captcha

Another method commonly used to verify the entity requesting something from

your web application is the real user (and not, for instance, a bot) is through the use of

CAPTCHA (Completely Automated Public Turing Test To Tell Computers and Humans

Apart). Basically a CAPTCHA is a web application that presents a graphical

representation of a word or phrase in distorted form, and with some method of

interference behind or in front of the word or phrase to make it “impossible” for a bot, or

computer program, to interpret. In conjunction with other security measures, a

CAPTCHA may be effective, but in some cases (such as the one involving

Amazon.com) a CAPTCHA should not be regarded as the primary means of protecting a

website from bots. Ha.ckers (2007) wrote that there are teams of individuals that do

nothing but use software to solve CAPTCHAs and do so from overseas and one such

team was used to effectively “break” Amazon.com’s CAPTCHA system to create

thousands of users for a malicious activity. In order to utilize a CAPTCHA effectively,

other factors in web application development must be appropriately addressed.

Security Holes Galore

Exposing a security vulnerability in one application typically requires the use of

another application and the level of native trust between them. For example, if an end-

user clicks on a link to a Flash SWF file Internet Explorer, Firefox and Google Chrome

web browsers will automatically create a default set of HTML code (a document) so that

8Web Application Security

the Flash SWF file will be embedded and then rendered in the web browser window.

Unfortunately, in the case of Internet Explorer 6, 7 and 8 the “allowscriptaccess”

property defaults to “samedomain” instead of “none” according to Guya.Net (2009).

This presents a security vulnerability that can be exploited by the SWF file because the

SWF file can use its native “ExternalInterface.call(‘eval’, ‘script’)” capability to reload the

web browser-generated HTML code to bypass the security measure employed by

Internet Explorer to not allow access to the dynamically generated document; neither

Firefox or Google Chrome recognize a plausible security vulnerability in the first place

(so it may be possible to gain access to the document source code by simply typing

“javascript:alert(document);” in the URL bar after the SWF has loaded in the web

browser-generated HTML code page) without you or the SWF reloading the page.

A new, emerging security vulnerability involves what is known as CSRF (Cross-

Site Request Forgery) that can be achieved with Adobe Flash by using Flash’s native

ability to inject javascript into the webpage it is embedded within, noted by Guya.Net

(2009). With this ability, the crafter of the Adobe Flash SWF file can embed a <script>

that could perform a variety of functions to extract data from a target website; and using

Adobe Flash’s cross-domain post capability allows you to handle larger volumes of data

that a get method prohibits. For example, you login to Site A. Site A authenticates you

and you are (most likely) assigned a session. You don’t log out of Site A. You then

travel to Site B which has a malicious SWF file that you access. That SWF file uses

code generated with a <script> injection and can then access data from Site A using

your assigned session. The responses from Site A are captured and the SWF file can

store those responses into a database or another location. What is interesting is with a

CSRF attack, an SWF file does not have to be used (although the SWF file does

obfuscate, or hide, the code) as was revealed by Techreads.Com (2007) where

common DOM techniques were used that worked in multiple web browsers. But, as

revealed by Heiko (2008), the SRC attribute of a standard tag can have the same

effect by using a SRC path such as

targetsite.com/dataRequest.aspx?sourceaccount=1443&action=transferfunds&destinati

onaccount=1000. The visible effect (assuming the image area is visible to the end user)

9Web Application Security

would be nothing more than a broken image icon since the response from the target site

would be in a format that was not an image type.

Another exploitation method is browser-based cross-zone scripting where a script

gets executed in a trusted (privileged zone) zone, as configured in the web browser, and

continues with the use of an insecure ActiveX component on the end-users computer.

HTTP response splitting, on the other hand, is a web application vulnerability that

surfaces when the web application does not sanitize input values that are sent to it (for

instance, from a web form).

It has long been thought that you can verify that the entity requesting something

from your web application can be validated by checking the IP address of the entity

against what was originally recorded; however this is only useful if the attacker is not

behind the same NAT’ed (Network Address Translation) IP address or web proxy as the

real end-user. However, newer versions of Internet Explorer, Firefox, Safari and Google

Chrome use the “HttpOnly” flag which allows your web application to set a cookie that is

unavailable to client-side scripts.

Improving Web Application Security

When you develop a web application or use one that was already built, you have

to keep in mind that it could be attacked or used by someone with considerable

knowledge of not only the product used to create the application (such as intimate

knowledge of Adobe Flash), but also technologies related or used in conjunction with

the application (such as, with the case of Adobe Flash, knowledge of web browser

behavior, DOM, low-level protocols such as GET/POST, and other applications). Before

you roll out any web application it should be tested for security and exercise good

security practices such as not placing session or authentication data into public-facing

10Web Application Security

(client-script accessible) cookies or session data as shown in Figure 1. Some

applications that could be used for security testing include:

• Acunetix WVS - http://www.acunetix.com/

• Automated Adobe Flash/Flex Crawling and Scanning -

http://www.authorstream.com/Presentation/orysegal-88813-automated-

flash-flex-crawling-scanning-web-application-security-testing-owasp-il-

2008-ronen-bachar-ria-science-technology-ppt-powerpoint/

• Core Impact Pro - http://www.coresecurity.com/content/core-impact-

overview

• Fortify 360 - http://www.fortify.com/products/fortify-360/vulnerability-

detection.jsp?location=location1

• IBM Rational AppScan Standard Edition - http://www-

01.ibm.com/software/awdtools/appscan/standard/

• Retina Web Security Scanner -

http://www.eeye.com/html/products/RetinaWebScanner/index.html

• WebInspect 8.0 -

https://download.spidynamics.com/webinspect/default.htm

Additionally there are many online resources that you can visit that list current

and past vulnerabilities which may be useful in security testing web applications (in

addition to other software and systems) such as:

• Computer Security Vulnerabilities - http://www.security.nnov.ru/

• National Vulnerability Database - http://nvd.nist.gov/

• US-CERT Cyber Security Bulletins - http://www.us-cert.gov/cas/bulletins/

11Web Application Security

Figure 1: Web Application Auditing

With web application development it is quite conceivable that a web application

may accept a file to upload and then have that file immediately exposed to the web

environment so that website users may interact with it (for example, someone updates

their forum avatar image or uploads a zip file). There are a few businesses that make

antivirus engines available, via SDK/API (Software Development Kit/Application

Programming Interface) at the application level. This means it is possible for the

application to scan the uploaded file immediately and act upon the file, as needed,

instead of relying on an external service as shown in Figure 2. This type of ability allows

the application to be more proactive, responsive and event logging capable where data

relating to a user may be recorded with greater detail than a system not directly tied to

the application. Some antivirus SDK/API’s are available from:

12Web Application Security

• AhnLab Engine SDK -

http://global.ahnlab.com/global/products/business_engine.html

• AntiVir SAVAPI -

http://www.avira.com/en/solutions/system_integration.html

• Frisk F-PROT - http://www.f-prot.com/partners/oem/

• VIPRE SDK - http://www.sunbeltsoftware.com/Developer/VIPRE-SDK/

Figure 2: Web Application Real-time Audit of Incoming Data

Where you have web applications which accept data, that data should be

sanitized so that it cannot be sent to an end-user and interpreted and executed by the

web browser (such as providing an end-user with the capability of submitting a web form

where they may type in client-side script, or use a RTE (Rich Text Editor)), and, the data

should be protected with a valid and recognized SSL certificate. Optimally, the data

should be sanitized against a security encoding library, as mentioned by OWASP (2009)

and not just escaped (double-encoding such as %253C for < and %253E for > can be

13Web Application Security

used to get around some sanitization attempts). One such security encoding library,

called AntiXSS is available from http://www.codeplex.com/AntiXSS. Your web

application should only accept data based on context. That is, you do not want a web

application which accepts data from a large web form to allow GET submissions in

addition to POST submissions (remember, simple XSS vulnerabilities will use query

strings which use the GET method). This is not a fail-safe method to help protect your

web application (since, using client-script, a request can be made to mimic a POST

submission in a link or in other scenarios), but it is a good first step. As well, do not

forget that a web service does not always need to have GET and POST methods

enabled, as indicated by Meier et al (2003).

Conclusion

When you develop a web application, ensure that incoming data is audited by

using a security encoding library. Try not to place sensitive data into cookies (such as

an account login or password), if cookies have to be used for something, try “HttpOnly”

cookies that are stored on the client which are not accessible by client-side script; use

session data sparingly. If binary data is accepted (such as the upload of a file), that file

should be sanitized of any virus, worm or malware which may be embedded in it by a

feature of Windows NTFS, and other file systems, known as ADS (Alternate Data

Stream). The simplest way to remove what was attached to the original file (by using

ADS) is to place the file on a FAT or FAT32 partition (FAT does not support ADS) and

then move the file to the destination location; but in most instances real-time anti-virus

applications that can be integrated into the web application are preferred. With regard

to handling incoming data, ensure that the web application only accepts the data

method expected. For example, if you have a web form set up which is sending data

using the POST method, the web application should only accept incoming data through

the POST method. Don’t forget to test the web application against an effective security

auditing tool so that known vulnerabilities can be detected and they can be resolved

before deploying the web application. Finally, secure the transport of data between the

client and your web application with an SSL (Secure Sockets Layer) certificate which will

14Web Application Security

encrypt data being passed back and forth instead of being passed as clear text where

anyone could intercept and read the data with minimal effort.

Consider reading “Active Man in the Middle Attacks” available online, written by

Saltzman and Sharabani (2009) which explains in fine detail different vulnerabilities that

can be relevant to web applications. As well OWASP (2005), the Open Web Application

Security Project organization has a variety of educational presentations on several

aspects of web application security that are worth reviewing. SANS Institute (2008)

provides a list of tools, organized by scope to assist in protecting web applications from

attacks in addition to other assets, such as application IDS/IPS (Intrusion Detection

System/Intrusion Prevention System). In conjunction with an application IDS/IPS, a web

application should log all requests that are made to it for auditing purposes (auditing of a

SQL database has finally been made a trivial process with SQL Server 2008 because

full auditing is built-in and managed natively from SQL Server 2008 so you don’t need to

write a limited application to attempt the same thing such as what you can, to a limited

degree, observe with SQL Profiler). Although not directly related to a web application, it

would be prudent to have a measure of additional control over services running on the

web server that may be exploited through a web application. Hameed (2008)

demonstrates how services can be locked-down on Windows Server 2008. As well,

Microsoft TechNet (2009) has created a security compliance management toolkit that

could aid in improving security of the Windows 2008 Server.

If you plan on supporting mashups, widgets, gadgets or dashboards on your

website when either those applications or the data those applications import come from

an external source, beyond your control, you should consider the ramifications. Some

of which are outlined below as specified by Safe Mashups (2009):

• Unanticipated entry point into internal applications from a desktop

• Unanticipated exit point for sensitive corporate information

15Web Application Security

• A new way to compromise a desktop that may be authenticated to

resources that divulge sensitive private information

It is important to also point out that in losing a degree of control and security by

using one of the aforementioned tools, you could open yourself up to classic

vulnerabilities that can be exploited through the tools themselves (if those tools are not

written and updated to current security standards and practices) such as cross-zone

scripting, HTTP response splitting, CSRF attacks, phishing and XSS. From the

perspective of web application development, those may not seem like significant

concerns since the tools being adopted or allowed to be used are 3rd party tools

primarily affecting your website users’ web browsers…it is important to realize that

getting into your website (your website applications or assets such as sensitive data)

starts by being able to see through the window you’ve provided. In the context of this

paper that window is the user of your website.

16Web Application Security

LIST OF FIGURES

Figure Page
Figure 1: Web Application Auditing………………………………………………………………………………………… 11
Figure 2: Web Application Real-time Audit of Incoming Data……………………………………. 12

17Web Application Security

REFERENCES

Amit, Y. (2008). AJAX Secuity: Breaking Google Gears’ Cross-Origin

Communication Model. Retrieved from http://blog.watchfire.com/wfblog/ajax_security/
on March 26, 2009.

Carnegie Mellon University (2000). CAPTCHA: Telling Humans and Computers

Apart Automatically. Retrieved from http://www.captcha.net/ on April 5, 2009.

Domenig, M. (2009). Rich Internet Appliations and AJAX – Selecting the Best

Product. Retrieved from http://www.javalobby.org/articles/ajax-ria-overview/ on March
13, 2009.

Guya.Net (2009). Bug in Internet Explorer Security Model When Embedding

Flash.
 Retrieved from http://blog.guya.net/2008/09/10/bug-in-internet-explorer-security-model-
when-embedding-flash/ on March 4, 2009.

Guya.Net (2009). Encapsulating CSRF Attacks Inside Massively Distributed

Flash Movies – Real World Example.
 Retrieved from http://blog.guya.net/2008/09/14/encapsulating-csrf-attacks-inside-
massively-distributed-flash-movies-real-world-example/ on March 4, 2009.

Ha.ckers (2007). Solving CAPTCHAs for Cash. Retrieved from

http://ha.ckers.org/blog/20070427/solving-captchas-for-cash/ on March 9, 2009.

Hameed, C. (2008). WS2008: Windows Service Hardening. Retrieved from

http://blogs.technet.com/askperf/archive/2008/02/03/ws2008-windows-service-
hardening.aspx on April 27, 2009.

Heiko (2008). CSRF – An Underestimated Attack Method. Retrieved from

http://www.rorsecurity.info/2008/05/05/csrf-an-underestimated-attack-method/ on March
20, 2009.

Help Net Security (2008). The Web Application Vulnerability Landscape.

Retrieved from http://www.net-security.org/secworld.php?id=6501 on April 20, 2009.

McCormack, J. (2008). Javascript XSS: Cross-Site Scripting and Digital

Signatures. Retrieved from
http://www.virtualsecrets.com/misc_imgs/javascript/javascrpt-xss-cross-site-
scripting.html on April 14, 2009.

Meier, J., et al (2003). Checklist: Securing Web Services. Retrieved from

http://msdn.microsoft.com/en-us/library/aa302349.aspx on April 22, 2009.

18Web Application Security

Microsoft TechNet (2009). Windows Server 2008 Security Compliance
Management Toolkit. Retrieved from http://technet.microsoft.com/en-
us/library/cc514539.aspx on April 27, 2009.

Moscaritolo, A. (2009). Web Apps Account for 80 Percent of Internet

Vulnerabilities. Retrieved from http://www.scmagazineus.com/Web-apps-account-for-
80-percent-of-internet-vulnerabilities/article/129027/ on March 26, 2009.

OWASP (2005). OWASP Presentations. Retrieved from

http://www.owasp.org/index.php/Category:OWASP_Presentations on February 18,
2009.

OWASP (2009). XSS (Cross Site Scripting) Prevention Cheat Sheet. Retrieved

from
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
on March 21, 2009.

Safe Mashups (2009). OpenAJAX and Similar Mashups. Retrieved from

http://www.safemashups.com/home/public_html/solutions_openajax.html on April 17,
2009.

Saltzman, R., Sharabani, A. (2009). Active Man in the Middle Attacks: A Security
Advisory. A whitepaper from IBM Rational Application Security Group. Retrieved from
http://blog.watchfire.com/AMitM.pdf on April 3, 2009.

SANS Institute (2008). Tools for Defense In-Depth. Retrieved from

http://www.sans.org/whatworks/wall.php?id=2 on March 16, 2009.

Techreads.Com (2007). Gmail Vulnerable to Contact List Hijacking. Retrieved

from http://www.cyber-knowledge.net/blog/2007/01/01/gmail-vulnerable-to-contact-list-
hijacking/ on April 6, 2009.

WASC (2006). MX Injection: Capturing and Exploiting Hidden Mail Servers.

Retrieved from http://www.webappsec.org/projects/articles/121106.shtml on April 17,
2009.

